This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

THE REACTION OF DIPHENYL DISULFIDE WITH 3,3-DIACETYLPROPYL MERCURY CHLORIDE

Glen A. Russella; Bing Zhi Shia

^a Department of Chemistry, Iowa State University, Ames, Iowa, USA

To cite this Article Russell, Glen A. and Shi, Bing Zhi(1994) 'THE REACTION OF DIPHENYL DISULFIDE WITH 3,3-DIACETYLPROPYL MERCURY CHLORIDE', Phosphorus, Sulfur, and Silicon and the Related Elements, 86: 1, 33-37

To link to this Article: DOI: 10.1080/10426509408018385 URL: http://dx.doi.org/10.1080/10426509408018385

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE REACTION OF DIPHENYL DISULFIDE WITH 3,3-DIACETYLPROPYL MERCURY CHLORIDE

GLEN A. RUSSELL† and BING ZHI SHI

Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA

(Received September 1, 1993; in final form January 13, 1994)

The enolate anion derived from (CH₃CO)₂CHCH₂CH₂HgCl undergoes cyclization with demercuration to form 1,1-diacetylcyclopropane. The presence of Ph₂S₂ prevents cyclization and leads to phenylthylation at carbon and at mercury. In the absence of base Ph₂S₂ reacts with (CH₃CO)₂CHCH₂CH₂HgCl in a photostimulated chain reaction to form (CH₃CO)₂CHCH₂CH₂SPh.

Key words: Diphenyl disulfide; mercury chloride; photostimulated reaction.

INTRODUCTION

The reaction of 1 with aqueous base has been reported to form Hg° and 2 via the transition state 3.1 Nucleophilic substitution at carbon in alkylmercurials by an S_N2 reaction is rare although there are now numerous examples of substitution occurring via the S_{RN} radical chain sequence.² We surmised that an intramolecular radical chain process might be involved in the conversion of 1 to 2 when it was observed that Ph₂S₂ completely prevented the formation of 2 in Me₂SO/KOCMe₃. However, Ph₂S₂ was not an inhibitor for a chain process but instead reacted with 3 and/or 1 to form 4 and 5.

(MeCO)₂CHCH₂CH₂HgSPh (MeCO)₂C(SPh)CH₂CH₂HgSPh (MeCO)₂CHCH₂CH₂SPh

RESULTS AND DISCUSSION

Photostimulated Reaction with Ph_2S_2

Compound 1 when irradiated by a fluorescent sunlamp with Ph₂S₂ in Me₂SO in the absence of base forms 4 and 6 (Table I). With 1 equiv. of Ph₂S₂ in 12 h, 6 is the major product (65-70%) accompanied by 5% of 4. However, with 0.5 equiv. of Ph₂S₂, 4 and 6 are formed in about equal yields of 30 and 25%, respectively.

[†]To whom all correspondence should be addressed.

TABLE I			
Reactions of 1 in Me ₂ SO at 35-40°C			

co-reactant (equiv.)	conditions ^a	product (% yield) ^b
Ph ₂ S ₂ (1)	12 h, dark	no reaction
Ph ₂ S ₂ (1)	12 h, hv	6 (70), 4 (5)
Ph ₂ S ₂ (1)	36 h, hv	6 (66), 4 (trace)
Ph ₂ S ₂ (0.5)	36 h, hv	6 (30), 4 (25)
none	16 h, hv	no reaction
KI (4)	24 h, dark	2 (5)
KI (4)	24 h, hv	2 (26); (MeCO) ₂ CHEt (22)
KOCMe ₃ (1)	30 min, dark	2(61)
NaOMe	2 h, dark	2 (58)
Me ₂ C=NO ₂ Li (1)	2 h, dark or hv	2 (47)
Ph ₂ S ₂ (1), KOCMe ₃ (1)	24 h, dark	5 (35), 4 (23)
Ph ₂ S ₂ (1), KOCMe ₃ (1)	12 h, hv	6 (22), 4 (15), 5 (9),
		(MeCO) ₂ C(SPh)CH ₂ CH ₂ SPh (10)

^aReaction of 0.25 mmol of 1 in 5 ml of Me₂SO; hv = irradiation by a 275W sunlamp under N₂. ^bBy GC and ¹H NMR integration with toluene as an internal standard.

Since no reaction occurs in the dark in the absence of base, reaction 1-3 must be occurring.

$$1 + Ph_2S_2 \xrightarrow{h\nu} 6 + PhSHgCl$$
 (1)

$$PhSHgCl + 1 \rightarrow 4 + HgCl_2$$
 (2)

$$\mathbf{4} + \mathrm{Ph}_2 \mathrm{S}_2 \xrightarrow{h\nu} \mathbf{6} + \mathrm{Hg}(\mathrm{SPh})_2 \tag{3}$$

The photostimulated reaction is inhibited by $(t-Bu)_2NO^*$ and from the observed inhibition periods an initial kinetic chain length of 30 was measured with 1 equiv. of Ph_2S_2 . The conversion of 1 to 6 occurs via reactions 4 (X = Cl or SPh) and 5, as has been previously established for the reactions of numerous organomercury halides.^{3,4} Diphenyl disulfide is readily attacked by free radicals (reaction 5) with a rate constant of 8×10^4 L/mol-s for 1°-alkyl radicals.³

$$PhS' + RHgX \rightarrow PhSHgX + R'$$
 (4)

$$R' + PhSSPh \rightarrow RSPh + PhS'$$
 (5)

Photochemical Decomposition of (MeCO)₂CHCH₂CH₂HgX

In Me₂SO photolysis of 1 occurs very slowly upon sunlamp irradiation or in a Rayonet photoreactor at 350 nm. In the presence of KI (4 equiv) the corresponding

iodide, or mercurate complex,⁵ photolyzed more readily and in 24 h with sunlamp irradiation formed (MeCO)₂CHCH₂Me and 2 in \sim a 1:1 ratio although in relatively low yields of 22 and 26%, respectively. This suggests that in the absence of a radical trap, (MeCO)₂CHCH₂CH₂ (formed by the photolysis of the mercurials) can abstract the methine hydrogen from 1 to yield a radical which can form 2 by S_{Hi} displacement of HgI*, reaction 6.

$$(MeCO)_2\dot{C}$$
 CH_2 - $HgI \rightarrow 2 + HgI'$ (6)

Reactions of (MeCO)₂CHCH₂CH₂HgCl with Base

The formation of 2 and Hg° from 1 occurs readily in Me₂SO in the presence of KOCMe₃ (61% in 30 min) or NaOMe (58% in 2 h). Reaction was not observed with pyridine, DABCO or Li₂CO₃ in a 24 h reaction period. The reactions with KOCMe₃ or NaOMe are not photostimulated and $(t\text{-Bu})_2\text{NO}^*$ has no effect on the rate of formation of 2. Compound 2 was also formed by reaction of 1 with Me₂C=NO₂ in the dark or upon irradiation. A radical trappable by $(t\text{-Bu})_2\text{NO}^*$ or Me₂C=NO₂ is not a precursor to 2 in cyclization promoted by bases. Apparently the S_Ni process described by 3 does indeed occur. However, upon addition of 1 equiv. of Ph₂S₂ in the dark, the reaction of 1 with KOCMe₃ produces as the only isolable products a mixture of 4 and 5 (Table I). The cyclopropane 2 is no longer detected. Some phenylthylating agent must trap 3 before the slow cyclization to 2 can occur. Diphenyl disulfide itself is not the agent since no reaction was observed in 24 h with the enolate anions formed from (MeCO)₂CHCH₂Me or (MeCO)₂CHCH₂CH₂SPh in Me₂SO. Under similar conditions 4 formed a trace (~5%) of 5 and 2 was again not detected.

One possible phenylthylating agent is a complex (7) of 1 or of (MeCO)₂C(SPh)CH₂CH₂HgCl with Ph₂S₂. Upon reacting with enolate anions 7a

RHgS(Ph)SPh⁺Cl⁻ + Nu:
$$^- \rightarrow 4 + 5 + \text{NuSPh}$$
 (7)

7, a, R = (MeCO)₂CHCH₂CH₂
b, R = (MeCO)₂C(SPh)CH₂CH₂

would be converted to 4 and 7b to 5, reaction 7. At the same time the enolate anion derived from 1 would be converted to NuSPh = $(MeCO)_2C(SPh)CH_2CH_2HgCl$ (the precursor to 7b), while the enolate anion derived from 4 would yield 5. Compound 5 could also be formed in an intramolecular reaction from the enolate anion derived from 7a. When the photolysis of 1 in the presence of both Ph_2S_2 and $KOCMe_3$ was performed, compounds 4, 5 and 6 were formed accompanied by $(MeCO)_2C(SPh)CH_2CH_2SPh$, the phenylthylation product of the enolate anion derived from 6. The enolate anions derived from 4 or 6 were also phenylthiolated by PhSCl (to yield 5 and $(MeCO)_2C(SPh)CH_2CH_2SPh$, respectively.

EXPERIMENTAL

- 3,3-Diacetylpropylmercury Chloride (1). Material prepared according to the literature procedure had mp $132-133^{\circ}$ C (lit. 132.0-132.5); 1 H NMR (CDCl₃) δ 2.05 (t, 2H, J=8.1 Hz), 2.187 (s, 6H), 2.666 (t, 2H, J=8.1 Hz); GCMS m/z (relative intensity) 364 (M⁺, 2), 336(14), 321(6), 127(100).
- 1,1-Diacetylcyclopropane (2). The compound was isolated as a liquid bp 74° C; H NMR (CDCl₃) δ 1.475 (s, 4H), 2.228 (s, 6H); GCMS m/z (relative intensity) 126 (M⁺, 7), 111(23), 84(s), 69(36), 43(100); HRMS 126.0680 (calcd for $C_7H_{10}O_2$ 126.0681).
- 3-Ethyl-2,4-pentanedione.⁶ The dione was isolated as a liquid by flash column chromatography (Kiesel gel 230–400 mesh ATSM) with hexane (99%)-ethyl acetate (1%) as the eluent. In CDCl₃ a 3:1 mixture of keto and enol forms was found by 'H NMR integration. 'H NMR (keto form) δ 0.905 (t, 3H, J = 7.5 Hz), 1.885 (m, 2H), 2.175 (s, 6H), 3.540 (t, 1H, J = 7.2 Hz); 'H NMR (enol form) δ 1.047 (t, 3H, J = 7.5 Hz), 2.257 (q, 2H, J = 7.5 Hz), 2.139 (s, 6H); GCMS of mixture m/z (relative intensity 128 (M⁺, 2), 113(2), 100(7), 86(30), 85(5), 71(59), 58(5), 55(2), 44(3), 43(100).
- 3,3-Diacetylpropylmercury Phenyl Sulfide, 4. The compound was isolated by flash chromatography. In CDCl₃ solution a 3:1 mixture of keto and enol and forms was indicated by ¹H NMR integration. ¹H NMR (keto form) δ 1.552 (t, 2H, J = 8.4 Hz), 2.130 (s, 6H), 2.280 (m, 2H), 3.558 (t, 1H, J = 6.9 Hz), 7.150–7.230 (m, 3H), 7.360–7.420 (m, 2H); ¹³C NMR (keto form) δ 27.17(t), 29.29(q), 32.93(t), 72.16(d), 125.32(d), 128.75(d), 132.98(d), 135.32(s), 204.00(s); ¹H NMR (enol form) δ 1.806 (t, 2H, J = 8.1 Hz), 7.070–7.140 (m, 3H), 7.360–7.420 (m, 2H); ¹³C NMR (enol form) δ 22.87(q), 26.56(t), 36.16(t), 113.88(s), 125.32(d), 128.75(d), 132.98(d), 135.32(s), 190.80(s); GC and HRMS m/z (relative intensity) 438.0589 (M $^{+}$, 0.4, calcd. for C₁₃H₁₆O₂SHg 438.0577), 420(2), 218(9), 185(3), 154(5), 127(26), 110(27), 109(88), 85(21), 77(7), 69(15), 65(38), 51(9), 43(100).
- 3,3-Diacetyl-3-(phenylthiyl)propylmercury Phenyl Sulfide, 5. The compound was isolated as a solid, mp $101-102^{\circ}$ C, by flash column chromatography; 1 H NMR (CDCl₃) δ 1.387 (t, 2H, J=7.2 Hz), 2.281 (s, 6H), 2.457 (t, 2H, J=7.2 Hz); 13 C NMR (CDCl₃) δ 26.48(q), 27.42(t), 29.87(t), 86.39(s), 125.49(d), 129.29(d), 129.78(d), 133.18(d), 135.18(d), 135.88(s), 200.99(s); GC and HRMS m/z (relative intensity) 546.0604 (M $^{+}$, 0.7, calcd. for C₁₉H₂₀O₂S₂Hg 546.0611), 274(4), 235(4), 218(7), 207(10), 193(25), 192(28), 175(12), 165(6), 123(16), 110(26), 109(100). Anal. Calcd. for C₁₉H₂₀O₂S₂H₆: C, 41.87; H, 3.70; S, 11.76. Found: C, 41.97; H, 3.72; S, 11.82.
- 3,3-Diacetylpropyl Phenyl Sulfide, **6**. The compound was isolated as a liquid by flash column chromatography. In CDCl₃ a 2:1 ratio of keto and enol forms was found by 1 H NMR integration. 1 H NMR (keto form) 2.060–2.170 (m, 2H), 2.145 (s, 6H), 2.883 (t, 2H, J=7.2 Hz), 3.917 (t, 1H, J=6.9 Hz), 7.160–7.400 (m, 5H); 13 C NMR (keto form) δ 27.16(t), 29.31(q), 31.58(t), 66.46(d), 126.38(d), 128.98(d), 129.54(d), 135.14(s), 203.48(s); 1 H NMR of enol form δ 2.059 (s, 6H), 2.522 (t, 2H, J=8.2 Hz), 2.906 (t, 2H, J=9.0 Hz), 7.160–7.140 (m, 5H); 13 C NMR (enol form) δ 22.85(q), 27.80(t), 34.25(t), 108.69(s), 126.53(d), 128.92(d), 130.06(d), 135.55(s), 191.28(s); FTIR 3408, 3061, 2922, 1724, 1699, 1358 cm $^{-1}$; GC and HRMS m/z (relative intensity) 236.0875 (M $^+$, 5, calcd for C $_{13}$ H $_{16}$ O $_2$ S 236.0871), 137(7), 136(62), 135(23), 127(12), 123(7), 113(16), 91(5), 85(17), 45(15), 43(100). Anal. calcd for C $_{13}$ H $_{16}$ O $_2$ S: C, 66.06; H, 6.82; S, 13.58. Found: C, 65.91; H, 6.78; S, 14.44.
- 3,3-Diacetyl-3-(phenylthiyl)propyl Phenyl Sulfide. The compound was isolated as a liquid by flash column chromatography; ¹H NMR (CDCl₃) δ 2.135 (t, 2H, J = 8.1 Hz), 2.276 (s, 6H), 2.884 (t, 2H, J = 8.1 Hz), 7.170-7.390 (m, 10H); GCMS m/z (relative intensity) 344 (M⁺, 4), 302(6), 235(3), 208(5), 166(16), 149(27), 123(88), 109(10), 91(8), 77(13), 65(10), 45(62), 41(100).

Determination of Product Yields. Reaction products obtained in deoxygenated Me₂SO were added to water and extracted with Et₂O or CH₂Cl₂. The dried extracts (MgSO₄) were concentrated under vacuum and a known amount of toluene added as an internal standard for ¹H NMR integration in CDCl₃ with qualitative verification of products by GC. Photochemical reactions were performed in pyrex tubes under N₂ with irradiation by a 275W fluorescent sunlamp. The kinetic chain length for the photostimulated reaction of 1 with Ph₂S₂ was followed by ¹H NMR in a 6 mm NMR tube. Tubes containing 0.1 mmol each of 1, Ph₂S₂ and PhCH₃ in 1 ml of Me₂SO-d₆ were irradiated under identical conditions with a 275W fluorescent sunlamp. In the absence of (t-Bu)₂NO⁴ an initial rate of formation of 6 of 0.00225 mol/L-min was observed. In the presence of 0.01 mol of (t-Bu)₂NO⁵ no reaction was observed for 150 min after which a rate of ~0.00225 mol/L-min was observed. The rate of initiation under the reaction conditions was thus 0.00007 mol/L-min. The rate of the photostimulated reaction in the presence of 0.2 mmol of KI was further accelerated by a factor of ~2.

ACKNOWLEDGEMENT

The work was supported by Grants CHE-8717871 and CHE-9220639 from the National Science Foundation.

REFERENCES

- 1. K. Ichikawa, O. Itoh and T. Kawamura, J. Org. Chem., 31, 447 (1966).
- 2. G. A. Russell, Acc. Chem. Res., 22, 1 (1989).
- 3. G. A. Russell and H. I. Tashtoush, J. Am. Chem. Soc., 105, 1398 (1983).
- G. A. Russell, P. Ngoviwatchai, H. I. Tashtoush, A. Pla-Dalmau and R. K. Khanna, J. Am. Chem. Soc., 110, 3530 (1988).
- G. A. Russell, S. Hu, S. Herron, W. Baik, P. Ngoviwatchai, W. Jiang, M. Nebgen and Y.-W. Wu, J. Phys. Org. Chem., 1, 299 (1988).
- J. B. Paine, J. R. Brough, K. K. Buller, E. I. Erikson and D. Dolphin, J. Org. Chem., 52, 3993 (1987).